CDX-U Recent Results

R. Majeski, R. Kaita, M. Boaz, P. Efthimion, T. Gray, D. Hoffman, B. Jones, H. Kugel, T. Munsat, C. Neumeyer, A. Post-Zwicker, S. Raftopoulos, V.

Soukhanovskii, J. Spaleta, G. Taylor, J. Timberlake, R. Woolley, PPPL,

M. Finkenthal, D. Stutman, Johns Hopkins University,

G. Antar, R. Doerner, S. Luckhardt, R. P. Seraydarian, R. W. Conn *UCSD*, R. Maingi, M. Menon, *ORNL*,

R. Causey, D. Buchenauer, M. Ulrickson *SNL*, M. Maiorano, *Rutgers University*

D. Rodger, G. Lovercheck, Drexel University

Operational Summary

- u CDX-U has been operating with the toroidal tray for nearly a year
- Have had problems with uniformity of the lithium coverage of the tray, surface cleanliness
- u But initial results indicated:
 - Better plasma performance
 - Reduced plasma conditioning overhead
 - Reduced impurities
 - Very low recycling on liquid lithium
 - » Solid lithium is not as effective
- In December the entire chamber and virtually all of the viewports were coated with lithium.
 - Coating was very uniform (visually)
 - Cause of the accident still unknown

Operational Summary (cont'd)

- u Coating incident disabled most of our gate valves
 - Wouldn't adequately seal
 - Couldn't replace or clean the windows
 - Spectroscopic diagnostics were limited to one view of the tray and one view of the centerstack
- u However:
 - Base pressure dropped by $3\times$, to the mid 10^{-8} range
 - Plasma performance afterward was good
- u Recently restored gate valve operation in most cases
 - Operated the valves for dozens of cycles
 - Most windows have now been cleaned, reinstalled
 - Resumed installation of diagnostics, additional gas puffing

CDX-U lithium tray limiter

- Discharges run on bare SS tray to establish baseline prior to lithium filling
- 34 cm major radius, 10 cm wide, 0.64 cm deep
- Fabricated in two halves with a toroidal electrical break
 - -Isolated from vessel
 - -Halves connected to electrical feedthroughs
- Heaters beneath for temperature control up to 400°C. Typ. ops 200 250°C
- Heat shield on center stack

 Heat/lithium shield between tray and lower vacuum flange

• Tray temperature monitored with thermocouples around edge

ALPS/APEX 15-19 April 2002 San Diego

Lithium tray fill was nonuniform, partly oxidized

• Photograph of the tray through a vacuum window after partial cleaning of the tray via AC argon glow discharge cleaning.

• Many hours of argon GDC required to remove oxide coatings, promote wetting of the tray by the lithium

Arc activity introduced lithium "aerosol" into the edge plasma

- Lithium particulate ejected from tray. J x B motion produced a spray pattern of lithium outboard of tray.
- Depositions resemble those found around the DOLLOP crucible in TFTR

Note that rapidly varying CDX-U vacuum OH, PF fields produced *no visible motion* of the liquid lithium

Discharge performance was improved with the toroidal liquid lithium limiter

- u Highest current discharges were obtained with liquid lithium (T=250 °C) in tray
 - Better performance than with Ti gettering. Surface does not saturate.
 - Density was limited. More gas puffing ≠ more density with liquid lithium in the tray

Highest plasma currents are correlated with lowest D_{α} , oxygen emission at the tray

Performance enhancement is due to interaction with liquid lithium in the tray

Edge density is not reduced local to the tray for the liquid lithium case

- u Carbon III emission (sensitive to density) for hot and cold trays overlays.
 - Edge density similar for hot, cold trays.

San Diego

Operation with fully lithium coated walls

⇒Coating was mostly removed after an ethanol wash.

⇒Restored to pristine clarity after a water rinse.

Note that previous 8 months of operation produced no noticeable coating

In early December 2001 a one-time coating "even" took place.

- Occurred in the space of one hour during tray warm-up.
- Never repeated; cause unknown.
- Windows in line-of-sight from the tray were coated.
- Gate valves would no longer completely seal.

CDX-U operated afterward with interesting results.

- Base pressure dropped by factor of 2-3.
- Very difficult to fuel the discharge.
- First slideaway discharges with significant fast electron energy in CDX-U history.
- Subsequently learned that repeated cycling of the gate valve (tens of operations) would restore the seal.
 - All gate-valve mounted viewports have now been replaced or cleaned.

Tokamak discharges were run shortly after the lithium coating "event"

- u Very difficult to fuel the discharge
 - » Strong hydrogen pumping. Walls?
- u Lithium emission from the centerstack is comparable to data with the tray hot
- u Centerstack D_{α} data <u>not</u> indicative of a reduction in local recycling

Performance enhancement with cold coated walls seems to be due to a reduction in oxygen

Digitizer malfunction lost much of the oxygen filterscope data

Full operation was eventually restored after the machine was coated (without a vent)

- windows were cleaned after gate valve function was restored
- u Both filterscopes now have lookdown views of the tray
- Additional spectroscopy installed
- u New insertable low field side "stick" puffer installed
 - Operation just commencing
 - Intended to provide higher fueling efficiency
- u New rf discharge cleaning electrodes should be completed next week
- u Fast camera view partially recovered
 - Original tray view lost until a vent
- u Thomson scattering windows still coated
 - However, laser not functional; requires maintenance

Reduction in tray D_{α} during tokamak operation with liquid lithium is still being observed

u Data taken 4/11/02 (hot) and 4/12/02 (cold)

ALPS/APEX

15-19 April 2002

San Diego

Following overnight argon glow (original data followed 24 hour glow)

New spectroscopy indicates no evidence for an increase in edge T_e local to the tray

u Lithium 6708/6704 line ratio is sensitive to the electron temperature.

ALPS/APEX

15-19 April 2002 San Diego

Next steps

- Tentative schedule:
 - Operate with the present tray until May (driven by PSI, IWIC-PIC)
 - » More hot tray experiments
 - » Also test new discharge cleaning, fueling techniques
- u Replace tray beginning in June
 - New surface treatment, filling system
 - Testing underway at UCSD, PPPL
- u Repeat experiments with better surface conditions
- u In FY03, design and install a new, internally recirculating lithium limiter
 - Likely based on Brad Nelson's design for C-mod

Simplified Li divertor module for CMOD

Brad Nelson ORNL

Summary

- u Liquid lithium PFCs are shown to reduce recycling and impurities
 - Enhanced tokamak performance
 - Effect still observed in CDX-U nearly a year after original lithium loading
- u Full lithium cold wall has a strong effect on impurities
 - Very efficient getter
 - Does not eliminate recycling, at least not in the 20-25 eV edge of CDX-U
- u Improved fueling, discharge cleaning techniques beginning
- u Tests of the new tray and filling technique are underway
- u Preparing an ICC proposal to begin a lithium tokamak experiment (LTX) using the CDX-U facility

